Neidio i’r prif gynnwys
English Cymraeg
Identification of hazards in meat products manufactured from cultured animal cells

Identification of hazards in meat products manufactured from cultured animal cells: references

List of references

Diweddarwyd ddiwethaf: 15 March 2023
Gweld yr holl ddiweddariadau
Diweddarwyd ddiwethaf: 15 March 2023
Gweld yr holl ddiweddariadau

1. N. Stephens, A. E. Sexton, and C. Driessen, ‘Making Sense of Making Meat: Key Moments in the First 20 Years of Tissue Engineering Muscle to Make Food’, Front. Sustain. Food Syst., vol. 3, 2019, doi: 10.3389/fsufs.2019.00045.

2.  Z. F. Bhat, H. Bhat, and V. Pathak, ‘Chapter 79 - Prospects for In Vitro Cultured Meat – A Future Harvest’, in Principles of Tissue Engineering (Fourth Edition), R. Lanza, R. Langer, and J. Vacanti, Eds. Boston: Academic Press, 2014, pp. 1663–1683.

3.  A. Gozalez and S. Koltrowitz, ‘The $280,000 lab-grown burger could be a more palatable $10 in two years - Reuters’, Reuters, 2020.

4.  R. J. F. Burton, ‘The potential impact of synthetic animal protein on livestock production: The new “war against agriculture”?’, J. Rural Stud., vol. 68, pp. 33–45, 2019, doi: 10.1016/j.jrurstud.2019.03.002.

5.  ‘10 most exciting lab meat startups from around the world_ EBSCOhost’.

6.  A. L. Abrams, ‘Further investment in lab-grown meat prompts new questions about regulatory implications.’, 2018.

7.  L. Burwood-Taylor, ‘Tyson Invests in Israeli Cultured Meat Startup Future Meat Technologies’, 2018.

8.  ‘INVESTMENTS Tyson Invests in Cultured Meat’, Putman Media Inc.

9.  ‘Cargill invests in cultured meat company Aleph Farms \textbar Cargill’. https://www.cargill.com/2019/cargill-invests-in-cultured-meat-company-a… (accessed Sep. 30, 2020).

10.            Regulation (EU) 2015/2283 of the European Parliament and of the Council of 25 November 2015 on novel foods, amending Regulation (EU) No 1169/2011 of the European Parliament and of the Council and repealing Regulation (EC) No 258/97 of the European Parliament and of the Council and Commission Regulation (EC) No 1852/2001 (Text with EEA relevance), vol. 327. 2015.

11.            Mattick, C. S.; Landis, A. E.; Allenby, B. A Case for Systemic Environmental Analysis of Cultured Meat. Journal of Integrative Agriculture 2015, 14 (2), 249–254. https://doi.org/10.1016/S2095-3119(14)60885-6.

12.            Pugliese, R.; Gelain, F. Characterization of Elastic, Thermo-Responsive, Self-Healable Supramolecular Hydrogel Made of Self-Assembly Peptides and Guar Gum. Materials and Design 2020, 186. https://doi.org/10.1016/j.matdes.2019.108370.

13.            Post, M. J. 11 - Proteins in Cultured Beef. In Proteins in Food Processing (Second Edition); Yada, R. Y., Ed.; Woodhead Publishing Series in Food Science, Technology and Nutrition; Woodhead Publishing, 2018; pp 289–298. https://doi.org/10.1016/B978-0-08-100722-8.00012-7.

14.            Warner, R. D. Review: Analysis of the Process and Drivers for Cellular Meat Production. Animal 2019, 13 (12), 3041–3058. https://doi.org/10.1017/S1751731119001897.

15.            Specht, L. An Analysis of Culture Medium Costs and Production Volumes for Cultivated Meat.

16.            Jönsson, E. Benevolent Technotopias and Hitherto Unimaginable Meats: Tracing the Promises of in Vitro Meat. Social Studies of Science 2016, 46 (5), 725–748. https://doi.org/10.1177/0306312716658561.

17.            Baquero-Perez, B.; Kuchipudi, S. V.; Nelli, R. K.; Chang, K. C. A Simplified but Robust Method for the Isolation of Avian and Mammalian Muscle Satellite Cells. BMC Cell Biology 2012, 13. https://doi.org/10.1186/1471-2121-13-16.

18.            Stephens, N.; King, E.; Lyall, C. Blood, Meat, and Upscaling Tissue Engineering: Promises, Anticipated Markets, and Performativity in the Biomedical and Agri-Food Sectors. BioSocieties 2018, 13 (2), 368–388. https://doi.org/10.1057/s41292-017-0072-1.

19.            Kummu, M.; Fader, M.; Gerten, D.; Guillaume, J. H.; Jalava, M.; Jägermeyr, J.; Pfister, S.; Porkka, M.; Siebert, S.; Varis, O. Bringing It All Together: Linking Measures to Secure Nations’ Food Supply. Current Opinion in Environmental Sustainability 2017, 29, 98–117. https://doi.org/10.1016/j.cosust.2018.01.006.

20.            Choi, K. H.; Lee, D. K.; Kim, S. W.; Woo, S. H.; Kim, D. Y.; Lee, C. K. Chemically Defined Media Can Maintain Pig Pluripotency Network In Vitro. Stem Cell Reports 2019, 13 (1), 221–234. https://doi.org/10.1016/j.stemcr.2019.05.028.

21.            Girón-Calle, J.; Vioque, J.; Pedroche, J.; Alaiz, M.; Yust, M. M.; Megías, C.; Millán, F. Chickpea Protein Hydrolysate as a Substitute for Serum in Cell Culture. Cytotechnology 2008, 57 (3), 263–272. https://doi.org/10.1007/s10616-008-9170-z.

22.            Li, X.; Zhang, G.; Zhao, X.; Zhou, J.; Du, G.; Chen, J. A Conceptual Air-Lift Reactor Design for Large Scale Animal Cell Cultivation in the Context of in Vitro Meat Production. Chemical Engineering Science 2020, 211. https://doi.org/10.1016/j.ces.2019.115269.

23.            Stephens, N.; Ellis, M. Cellular Agriculture in the UK: A Review. Wellcome Open Research 2020, 5 (12). https://doi.org/10.12688/wellcomeopenres.15685.2.

24.            Thorrez, L.; Vandenburgh, H. Challenges in the Quest for “Clean Meat.” Nat. Biotechnol. 2019, 37 (3), 215–216. https://doi.org/10.1038/s41587-019-0043-0.

25.            Ikeda, K.; Takeuchi, S. Anchorage-Dependent Cell Expansion in Fiber-Shaped Microcarrier Aggregates. Biotechnology Progress 2019, 35 (2), e2755. https://doi.org/10.1002/btpr.2755.

26.            Krieger, J.; Park, B. W.; Lambert, C. R.; Malcuit, C. 3D Skeletal Muscle Fascicle Engineering Is Improved with TGF-Β1 Treatment of Myogenic Cells and Their Co-Culture with Myofibroblasts. PeerJ 2018, 2018 (7). https://doi.org/10.7717/peerj.4939.

27.            Nelson, A. Cargill invests in cultured meat company Aleph Farms | Cargill. https://www.cargill.com/2019/cargill-invests-in-cultured-meat-company-a… (accessed Jan 5, 2021).

28.            Shima, A.; Itou, A.; Takeuchi, S. Cell Fibers Promote Proliferation of Co-Cultured Cells on a Dish. Scientific Reports 2020, 10 (1). https://doi.org/10.1038/s41598-019-57213-0.

29.            Edelman, P. d.; McFarland, D. c.; Mironov, V. a.; Matheny, J. g. Commentary: In Vitro-Cultured Meat Production. Tissue Engineering 2005, 11 (5), 659–662. https://doi.org/10.1089/ten.2005.11.659.

30.            Agriculture. Trends in Food Science & Technology 2018, 78, 155–166. https://doi.org/10.1016/j.tifs.2018.04.010.

31.            N. J. Genovese, R. M. Roberts, and B. P. V. L. Telegu, ‘Method for scalable skeletal muscle lineage specification and cultivation’, WO2015066377A1, May 07, 2015.

32.            ‘Frontiers | Bioprocess Design Considerations for Cultured Meat Production With a Focus on the Expansion Bioreactor | Sustainable Food Systems’. https://www.frontiersin.org/articles/10.3389/fsufs.2019.00044/full (accessed Sep. 30, 2020).

33.            I. Savir, S. Friedman, and K. Barak, ‘Cultured meat-containing hybrid food’, WO2018189738A1, Oct. 18, 2018.

34.            B. Baquero-Perez, S. V. Kuchipudi, R. K. Nelli, and K.-C. Chang, ‘A simplified but robust method for the isolation of avian and mammalian muscle satellite cells’, BMC Cell Biol., vol. 13, no. 1, p. 16, Jun. 2012, doi: 10.1186/1471-2121-13-16.

35.            ‘Enhanced Development of Skeletal Myotubes from Porcine Induced Pluripotent Stem Cells | Scientific Reports’. https://www.nature.com/articles/srep41833 (accessed Sep. 30, 2020).

36.            R. Simsa, J. Yuen, A. Stout, N. Rubio, P. Fogelstrand, and D. L. Kaplan, ‘Extracellular Heme Proteins Influence Bovine Myosatellite Cell Proliferation and the Color of Cell-Based Meat’, Foods, vol. 8, no. 10, Oct. 2019, doi: 10.3390/foods8100521.

37.            C. van der Weele and J. Tramper, ‘Cultured meat: every village its own factory?’, Trends Biotechnol., vol. 32, no. 6, pp. 294–296, Jun. 2014, doi: 10.1016/j.tibtech.2014.04.009.

38.            Y. Morimoto, A. Y. Hsiao, and S. Takeuchi, ‘Point-, line-, and plane-shaped cellular constructs for 3D tissue assembly’, Adv. Drug Deliv. Rev., vol. 95, pp. 29–39, Dec. 2015, doi: 10.1016/j.addr.2015.09.003.

39.            T. Ben-Arye and S. Levenberg, ‘Tissue Engineering for Clean Meat Production’, Front. Sustain. Food Syst., vol. 3, p. undefined-undefined, 2019, doi: 10.3389/fsufs.2019.00046.

40.            M. S. Arshad, M. Javed, M. Sohaib, F. Saeed, A. Imran, and Z. Amjad, ‘Tissue engineering approaches to develop cultured meat from cells: A mini review’, Cogent Food Agric., vol. 3, no. 1, p. 1320814, Jan. 2017, doi: 10.1080/23311932.2017.1320814.

41.            K.-H. Choi, D.-K. Lee, S. W. Kim, S.-H. Woo, D.-Y. Kim, and C.-K. Lee, ‘Chemically Defined Media Can Maintain Pig Pluripotency Network In Vitro’, Stem Cell Rep., vol. 13, no. 1, pp. 221–234, Jul. 2019, doi: 10.1016/j.stemcr.2019.05.028

42.            J. Girón-Calle et al., ‘Chickpea protein hydrolysate as a substitute for serum in cell culture’, Cytotechnology, vol. 57, no. 3, pp. 263–272, Jul. 2008, doi: 10.1007/s10616-008-9170-z.

43.            Z. F. Bhat, J. D. Morton, S. L. Mason, A. E.-D. A. Bekhit, and H. F. Bhat, ‘Technological, Regulatory, and Ethical Aspects of In Vitro Meat: A Future Slaughter-Free Harvest’, Compr. Rev. Food Sci. Food Saf., vol. 18, no. 4, pp. 1192–1208, 2019, doi: 10.1111/1541-4337.12473.

44.            X. Li, G. Zhang, X. Zhao, J. Zhou, G. Du, and J. Chen, ‘A conceptual air-lift reactor design for large scale animal cell cultivation in the context of in vitro meat production’, Chem. Eng. Sci., vol. 211, p. 115269, Jan. 2020, doi: 10.1016/j.ces.2019.115269.

45.            M. J. Post, ‘An alternative animal protein source: cultured beef’, Ann. N. Y. Acad. Sci., vol. 1328, pp. 29–33, Nov. 2014, doi: 10.1111/nyas.12569.

46.            M. Post and C. van der Weele, ‘Chapter 78 - Principles of Tissue Engineering for Food’, in Principles of Tissue Engineering (Fourth Edition), R. Lanza, R. Langer, and J. Vacanti, Eds. Boston: Academic Press, 2014, pp. 1647–1662.

47.            Z. F. Bhat, S. Kumar, and H. Fayaz, ‘In vitro meat production: Challenges and benefits over conventional meat production’, J. Integr. Agric., vol. 14, no. 2, pp. 241–248, Feb. 2015, doi: 10.1016/S2095-3119(14)60887-X.

48.            X. Li, G. Zhang, X. Zhao, J. Zhou, G. Du, and J. Chen, ‘A conceptual air-lift reactor design for large scale animal cell cultivation in the context of in vitro meat production’, Chem. Eng. Sci., vol. 211, p. 115269, Jan. 2020, doi: 10.1016/j.ces.2019.115269.

49.            A. Orzechowski, ‘Artificial meat? Feasible approach based on the experience from cell culture studies’, J. Integr. Agric., vol. 14, no. 2, pp. 217–221, Feb. 2015, doi: 10.1016/S2095-3119(14)60882-0.

50.            G. Zhang, X. Zhao, X. Li, G. Du, J. Zhou, and J. Chen, ‘Challenges and possibilities for bio-manufacturing cultured meat’, Trends Food Sci. Technol., vol. 97, pp. 443–450, Mar. 2020, doi: 10.1016/j.tifs.2020.01.026.

51.            Good Food Institute, ‘How it’s made: the science behind cultivated meat’, A Bit of Science. http://elliotswartz.com/cellbasedmeat/cleanmeat301 (accessed Oct. 02, 2020).

52.            R. Pugliese and F. Gelain, ‘Characterization of elastic, thermo-responsive, self-healable supramolecular hydrogel made of self-assembly peptides and guar gum’, Mater. Des., vol. 186, 2020, doi: 10.1016/j.matdes.2019.108370.

53.            M. S. M. Moritz, S. E. L. Verbruggen, and M. J. Post, ‘Alternatives for large-scale production of cultured beef: A review’, J. Integr. Agric., vol. 14, no. 2, pp. 208–216, Feb. 2015, doi: 10.1016/S2095-3119(14)60889-3.

54.            ‘Maintaining bovine satellite cells stemness through p38 pathway | Scientific Reports’. https://www.nature.com/articles/s41598-018-28746-7 (accessed Sep. 30, 2020).

55.            N. Stephens, L. Di Silvio, I. Dunsford, M. Ellis, A. Glencross, and A. Sexton, ‘Bringing cultured meat to market: Technical, socio-political, and regulatory challenges in cellular agriculture’, Trends Food Sci. Technol., vol. 78, pp. 155–166, Aug. 2018, doi: 10.1016/j.tifs.2018.04.010.

56.            J. Krieger, B.-W. Park, C. R. Lambert, and C. Malcuit, ‘3D skeletal muscle fascicle engineering is improved with TGF-β1 treatment of myogenic cells and their co-culture with myofibroblasts’, PeerJ, vol. 6, p. e4939, 2018, doi: 10.7717/peerj.4939.

57.            Burdick, Jason A., and Gordana Vunjak-Novakovic. “Engineered Microenvironments for Controlled Stem Cell Differentiation.” Tissue Engineering Part A, vol. 15, no. 2, Mary Ann Liebert, Inc., Feb. 2009, pp. 205–19.  https://doi.org/10.1089/ten.tea.2008.0131.

58.            G. Forgacs and N. Gupta, ‘Large scale cell culture system for making meat and associated products’. Dec. 12, 2019, Accessed: Sep. 30, 2020. [Online]. Available: https://patents.google.com/patent/US20190376026A1/en.

59.            L. Specht, ‘An analysis of culture medium costs and production volumes for cultivated meat’, p. 30.

60.            I. M. Volkova and D. G. Korovina, ‘Three-dimensional matrixes of natural and synthetic origin for cell biotechnology’, Appl. Biochem. Microbiol., vol. 51, no. 9, pp. 841–856, 2015, doi: 10.1134/S0003683815090082.

61.            N. Stephens, A. E. Sexton, and C. Driessen, ‘Making Sense of Making Meat: Key Moments in the First 20 Years of Tissue Engineering Muscle to Make Food’, Front. Sustain. Food Syst., vol. 3, 2019, doi: 10.3389/fsufs.2019.00045.

62.            ‘Building starch backbones for lab-grown meat using Lego pieces’. https://www.sciencedaily.com/releases/2019/03/190326160525.htm (accessed Sep. 30, 2020).

63.            F. Iberite et al., ‘Combined Effects of Electrical Stimulation and Protein Coatings on Myotube Formation in a Soft Porous Scaffold’, Ann. Biomed. Eng., vol. 48, no. 2, pp. 734–746, 2020, doi: 10.1007/s10439-019-02397-9.

64.            R. M. D. Soares, N. M. Siqueira, M. P. Prabhakaram, and S. Ramakrishna, ‘Electrospinning and electrospray of bio-based and natural polymers for biomaterials development’, Mater. Sci. Eng. C, vol. 92, pp. 969–982, 2018, doi: https://doi.org/10.1016/j.msec.2018.08.004

65.            G. Forgacs, F. S. Marga, and C. Norotte, ‘Self-assembling multicellular bodies and methods of producing a three-dimensional biological structure using the same’, WO2010008905A2, Jan. 21, 2010.

66.            K. Ikeda and S. Takeuchi, ‘Anchorage-dependent cell expansion in fiber-shaped microcarrier aggregates’, Biotechnol. Prog., vol. 35, no. 2, 2019, doi: 10.1002/btpr.2755.

67.            F. Marga, G. Forgacs, B. P. PURCELL, and A. FORGACS, ‘Edible and animal-product-free microcarriers for engineered meat’, WO2015038988A1, Mar. 19, 2015.

68.            N. Wung, S. M. Acott, D. Tosh, and M. J. Ellis, ‘Hollow fibre membrane bioreactors for tissue engineering applications’, Biotechnol. Lett., vol. 36, no. 12, pp. 2357–2366, Dec. 2014, doi: 10.1007/s10529-014-1619-x.

69.            S. Ding et al., ‘Maintaining bovine satellite cells stemness through p38 pathway’, Sci. Rep., vol. 8, no. 1, 2018, doi: 10.1038/s41598-018-28746-7.

70.            M. J. Post, ‘Cultured meat from stem cells: Challenges and prospects’, Meat Sci., vol. 92, no. 3, pp. 297–301, Nov. 2012, doi: 10.1016/j.meatsci.2012.04.008

71.            C. S. Mattick, A. E. Landis, and B. Allenby, ‘A case for systemic environmental analysis of cultured meat’, J. Integr. Agric., vol. 14, no. 2, pp. 249–254, Feb. 2015, doi: 10.1016/S2095-3119(14)60885-6.

72.            J. Enrione et al., ‘Edible scaffolds based on non-mammalian biopolymers for myoblast growth’, Materials, vol. 10, no. 12, 2017, doi: 10.3390/ma10121404.

73.            Z. F. Bhat, S. Kumar, and H. F. Bhat, ‘In vitro meat: A future animal-free harvest’, Crit. Rev. Food Sci. Nutr., vol. 57, no. 4, pp. 782–789, 2017, doi: 10.1080/10408398.2014.924899.

74.            Z. F. Bhat, J. D. Morton, S. L. Mason, A. E. D. A. Bekhit, and H. F. Bhat, ‘Technological, Regulatory, and Ethical Aspects of In Vitro Meat: A Future Slaughter-Free Harvest’, Compr. Rev. Food Sci. Food Saf., 2019, doi: 10.1111/1541-4337.12473.

75.            I. Fraeye, M. Kratka, H. Vandenburgh, and L. Thorrez, ‘Sensorial and Nutritional Aspects of Cultured Meat in Comparison to Traditional Meat: Much to Be Inferred’, Front. Nutr., vol. 7, 2020, doi: 10.3389/fnut.2020.00035.

76.            Wang, H.; Kong, L.; Ziegler, G. R. Aligned Wet-Electrospun Starch Fiber Mats. Food Hydrocolloids 2019, 90, 113–117. https://doi.org/10.1016/j.foodhyd.2018.12.008.

77.            Burgess, C. M.; Rivas, L.; McDonnell, M. J.; Duffy, G. Biocontrol of Pathogens in the Meat Chain. In Meat Biotechnology; Toldrá, F., Ed.; Springer New York: New York, NY, 2008; pp 253–288. https://doi.org/10.1007/978-0-387-79382-5_12.

78.            von Braun, J. Bioeconomy – The Global Trend and Its Implications for Sustainability and Food Security. Global Food Security 2018, 19, 81–83. https://doi.org/10.1016/j.gfs.2018.10.003.

79.            Allan, S. J.; De Bank, P. A.; Ellis, M. J. Bioprocess Design Considerations for Cultured Meat Production With a Focus on the Expansion Bioreactor. Front. Sustain. Food Syst. 2019, 3. https://doi.org/10.3389/fsufs.2019.00044.

80.            Verbruggen, S.; Luining, D.; Essen, A. van; Post, M. J. Bovine Myoblast Cell Production in a Microcarriers-Based System. Cytotechnology 2018, 70 (2), 503–512. https://doi.org/10.1007/s10616-017-0101-8.

81.            Building starch backbones for lab-grown meat using Lego pieces https://phys.org/news/2019-03-starch-backbones-lab-grown-meat-lego.html (accessed Jan 5, 2021).

82.            Shima, A.; Itou, A.; Takeuchi, S. Cell Fibers Promote Proliferation of Co-Cultured Cells on a Dish. Scientific Reports 2020, 10 (1). https://doi.org/10.1038/s41598-019-57213-0.

83.            Meatingplace. Cell-Cultured Meat Jurisdiction; 2018; pp 12–13

84.            Wang, H.; Kong, L.; Ziegler, G. R. Aligned Wet-Electrospun Starch Fiber Mats. Food Hydrocolloids 2019, 90, 113–117. https://doi.org/10.1016/j.foodhyd.2018.12.008.

85.            Harvey, S. Cell-Cultured, Plant Based Meats, Not Classic Veggie Fare, Post Most Risk to Conventional Category; 2019.

86.            Rischer, H.; Szilvay, G. R.; Oksman-Caldentey, K.-M. Cellular Agriculture — Industrial Biotechnology for Food and Materials. Current Opinion in Biotechnology 2020, 61, 128–134. https://doi.org/10.1016/j.copbio.2019.12.003.

87.            Cherubini, E. Cellular Agriculture Seeking Funding for Lab-Grown Meat Tech; 2020.

88.            Mattick, C. S. Cellular Agriculture: The Coming Revolution in Food Production. Bulletin of the Atomic Scientists 2018, 74 (1), 32–35. https://doi.org/10.1080/00963402.2017.1413059.

89.            Zhang, G.; Zhao, X.; Li, X.; Du, G.; Zhou, J.; Chen, J. Challenges and Possibilities for Bio-Manufacturing Cultured Meat. Trends in Food Science & Technology 2020, 97, 443–450. https://doi.org/10.1016/j.tifs.2020.01.026.

90.            Knipe, L. Challenges of meatless, meatlike products https://www.provisioneronline.com/articles/107087-challenges-of-meatles… (accessed Jan 5, 2021).

91.            Science, Technology and Nutrition; Woodhead Publishing, 2017; pp 425–441. https://doi.org/10.1016/B978-0-08-100593-4.00017-5.

92.            Post, M.; van der Weele, C. Chapter 78 - Principles of Tissue Engineering for Food. In Principles of Tissue Engineering (Fourth Edition); Lanza, R., Langer, R., Vacanti, J., Eds.; Academic Press: Boston, 2014; pp 1647–1662. https://doi.org/10.1016/B978-0-12-398358-9.00078-1.

93.            Bhat, Z.; Bhat, H. Animal Free Meat Biofabrication. American Journal of Food Technology 2011, 411–459.

94.            Bhat, Z. F.; Bhat, H.; Pathak, V. Chapter 79 - Prospects for In Vitro Cultured Meat – A Future Harvest. In Principles of Tissue Engineering (Fourth Edition); Lanza, R., Langer, R., Vacanti, J., Eds.; Academic Press: Boston, 2014; pp 1663–1683. https://doi.org/10.1016/B978-0-12-398358-9.00079-3.

95.            Fernandes, A. M.; de Souza Teixeira, O.; Palma Revillion, J. P.; de Souza, Â. R. L. Conceptual Evolution and Scientific Approaches about Synthetic Meat. J Food Sci Technol 2020, 57 (6), 1991–1999. https://doi.org/10.1007/s13197-019-04155-0.

96.            Schuster, E.; Wallin, P.; Klose, F. P.; Gold, J.; Ström, A. Correlating Network Structure with Functional Properties of Capillary Alginate Gels for Muscle Fiber Formation. Food Hydrocolloids 2017, 72, 210–218. https://doi.org/10.1016/j.foodhyd.2017.05.036.

97.            Griffiths, S. Cultured beef: current status and challenges https://fstjournal.org/features/27-1/cultured-beef (accessed Sep 30, 2020).

98.            Post, M. J. Cultured Beef: Medical Technology to Produce Food. Journal of the Science of Food and Agriculture 2014, 94 (6), 1039–1041. https://doi.org/10.1002/jsfa.6474.

99.            Shetty, R.; BioWorks, G. Cultured Ingredients Arrive; Perfumer & Flavorist, 2013; Vol. 38.

100.          Post, M. J. Cultured Meat from Stem Cells: Challenges and Prospects. Meat Science 2012, 92 (3), 297–301. https://doi.org/10.1016/j.meatsci.2012.04.008.

101.          Harvey, S. Cultured meat start-up Meatable secures new funding https://www.just-food.com/news/cultured-meat-start-up-meatable-secures-… (accessed Sep 30, 2020).

102.          Muraille, E. “Cultured” meat could create more problems than it solves http://theconversation.com/cultured-meat-could-create-more-problems-tha… (accessed Jan 5, 2021).

103.          Marga, F.; Forgacs, G.; Purcell, B. P.; Forgacs, A. Edible and Animal-Product-Free Microcarriers for Engineered Meat. WO2015038988A1, March 19, 2015.

104.          Harvey, S. Cultured meat start-up Mosa Meat draws further investor backing https://www.just-food.com/news/cultured-meat-start-up-mosa-meat-draws-f… (accessed Jan 5, 2021).

105.          Enrione, J.; Blaker, J. J.; Brown, D. I.; Weinstein-Oppenheimer, C. R.; Pepczynska, M.; Olguín, Y.; Sánchez, E.; Acevedo, C. A. Edible Scaffolds Based on Non-Mammalian Biopolymers for Myoblast Growth. Materials (Basel) 2017, 10 (12). https://doi.org/10.3390/ma10121404.

106.          Boonen, K. J. M.; Langelaan, M. L. P.; Polak, R. B.; van der Schaft, D. W. J.; Baaijens, F. P. T.; Post, M. J. Effects of a Combined Mechanical Stimulation Protocol: Value for Skeletal Muscle Tissue Engineering. J Biomech 2010, 43 (8), 1514–1521. https://doi.org/10.1016/j.jbiomech.2010.01.039.

107.          Soares, R. M. D.; Siqueira, N. M.; Prabhakaram, M. P.; Ramakrishna, S. Electrospinning and Electrospray of Bio-Based and Natural Polymers for Biomaterials Development. Materials Science and Engineering: C 2018, 92, 969–982. https://doi.org/10.1016/j.msec.2018.08.004.

108.          Zhong, J.; Mohan, S. D.; Bell, A.; Terry, A.; Mitchell, G. R.; Davis, F. J. Electrospinning of Food-Grade Nanofibres from Whey Protein. International Journal of Biological Macromolecules 2018, 113, 764–773. https://doi.org/10.1016/j.ijbiomac.2018.02.113.

109.          van der Weele, C.; Tramper, J. Cultured Meat: Every Village Its Own Factory? Trends Biotechnol. 2014, 32 (6), 294–296. https://doi.org/10.1016/j.tibtech.2014.04.009.

110.          Genovese, N. J.; Domeier, T. L.; Telugu, B. P. V. L.; Roberts, R. M. Enhanced Development of Skeletal Myotubes from Porcine Induced Pluripotent Stem Cells. Scientific Reports 2017, 7. https://doi.org/10.1038/srep41833.

111.          Tuomisto, H. L.; Teixeira de Mattos, M. J. Environmental Impacts of Cultured Meat Production. Environ. Sci. Technol. 2011, 45 (14), 6117–6123. https://doi.org/10.1021/es200130u.

112.          Simsa, R.; Yuen, J.; Stout, A.; Rubio, N.; Fogelstrand, P.; Kaplan, D. L. Extracellular Heme Proteins Influence Bovine Myosatellite Cell Proliferation and the Color of Cell-Based Meat. Foods 2019, 8 (10). https://doi.org/10.3390/foods8100521.

113.          Farm; Dairy. FDA Position. Farm and Dairy 2019.

114.          Voelker, R. FDA Prods “Clean Meat” Discussion. JAMA 2018, 320 (3), 228. https://doi.org/10.1001/jama.2018.9507.

115.          Feed the World. Chemistry & Industry 2017, 81 (1), 18–21. https://doi.org/10.1002/cind.811_7.

116.          Yadav, P. S.; Singh, R. K.; Singh, B. Fetal Stem Cells in Farm Animals: Applications in Health and Production. Agric Res 2012, 1 (1), 67–77. https://doi.org/10.1007/s40003-011-0001-7.

117.          Didzbalis, J.; Munafo, J. P. Flavor Composition and Edible Compositions Containing Same. US20140205729A1, July 24, 2014.

118.          Bazrafshan, A.; Talaei-Khozani, T. Food Engineering as a Potential Solution for Mitigating of the Detrimental Effects of Livestock Production. 2019, 7 (2), 10.

119.          Specht, L. Food Production Meat by the Molecule: Making Meat with Plants and Cells; 2018.

120.          Loveday, S. M. Food Proteins: Technological, Nutritional, and Sustainability Attributes of Traditional and Emerging Proteins. Annu Rev Food Sci Technol 2019, 10, 311–339. https://doi.org/10.1146/annurev-food-032818-121128.

121.          “Formal Agreement Between the U.S. Department of Health and Human Services Food and Drug Administration and U.S. Department of Agriculture Office of Food Safety”, USDA. https://www.fsis.usda.gov/sites/default/files/media_file/2020 (accessed Feb 28, 2023).

122.          Petetin, L. Frankenburgers, Risks and Approval. European Journal of Risk Regulation 2014, 5 (2), 168–186.

123.          Ouyang, S. From the Farm to the Lab: A Future with in-Vitro Meat. Food New Zealand 2019, 19 (6), 42.

124.          Abrams, A. L. Further Investment in Lab-Grown Meat Prompts New Questions about Regulatory Implications.; 2018; pp 11–13.

125.          Coyne, A. Future Meat Raises Millions of Dollars for Lab-Grown; 2020.

126.          Guermazi, M.; Derbel, N.; Kanoun, O. Fuzzy Logic Diagnosis of the In-Vitro Meat Inspection Based on Impedance Spectroscopy. In 2016 8th International Conference on Modelling, Identification and Control (ICMIC); 2016; pp 1076–1080. https://doi.org/10.1109/ICMIC.2016.7804272.

127.          Cooper, B. Hampton Creek unveils synthetic meat plans. https://www.just-food.com/news/hampton-creek-unveils-synthetic-meat-pla… (accessed Sep 30, 2020).

128.          Wung, N.; Acott, S. M.; Tosh, D.; Ellis, M. J. Hollow Fibre Membrane Bioreactors for Tissue Engineering Applications. Biotechnol. Lett. 2014, 36 (12), 2357–2366. https://doi.org/10.1007/s10529-014-1619-x.

129.          Best, D. How Can Cell-Based Food Reach Scale?; 2019.

130.          Benjaminson, M. A.; Gilchriest, J. A.; Lorenz, M. In Vitro Edible Muscle Protein Production System (Mpps): Stage 1, Fish. Acta Astronautica 2002, 51 (12), 879–889. https://doi.org/10.1016/S0094-5765(02)00033-4.

131.          Bhat, Z. F.; Kumar, S.; Fayaz, H. In Vitro Meat Production: Challenges and Benefits over Conventional Meat Production. Journal of Integrative Agriculture 2015, 14 (2), 241–248. https://doi.org/10.1016/S2095-3119(14)60887-X.

132.          Woll, S.; Boehm, I. In-Vitro Meat: A Solution for Problems of Meat Production and Meat Consumption? Ernährungs Umschau 2018, No. 65, 12–21. https://doi.org/10.4455/eu.2018.003.

133.          Iberite, F.; Gerges, I.; Vannozzi, L.; Marino, A.; Piazzoni, M.; Santaniello, T.; Lenardi, C.; Ricotti, L. Combined Effects of Electrical Stimulation and Protein Coatings on Myotube Formation in a Soft Porous Scaffold. Annals of Biomedical Engineering 2020, 48 (2), 734–746. https://doi.org/10.1007/s10439-019-02397-9.

134. M. Jedrzejczak-Silicka, ‘History of Cell Culture’, in New Insights into Cell Culture Technology, S. J. T. Gowder, Ed. InTech, 2017.135. BBC News. “Singapore Approves Lab-grown ‘chicken’ Meat.” BBC News, 2 Dec. 2020, https://www.bbc.co.uk/news/business-55155741.

136. “FDA Completes First Pre-Market Consultation for Human Food Made Using Animal Cell Culture Technology.” U.S. Food And Drug Administration, 16 Nov. 2022. https://www.fda.gov/food/cfsan-constituent-updates/fda-completes-first-pre-market-consultation-human-food-made-using-animal-cell-culture-technology.