
21st Century Meat Inspector – 
Project Report 

July 2021 

Dr Nik Watson (University of Nottingham) 

Dr Ahmed Rady (University of Nottingham) 

Dr Crispin Coombs (Loughborough University) 

Dr Alicia Parkes (Loughborough University) 

Dr Rob Moss (University College London) 

Mr Ashkan Ajeer (University College London) 
https://doi.org/10.46756/sci.fsa.hup976

https://doi.org/10.46756/sci.fsa.hup976


 
1 
 

Contents 
1 Summary ............................................................................................................. 2 
2 Introduction .......................................................................................................... 3 
3 Aims and Objectives ............................................................................................ 6 

3.1 Project Time Plan .......................................................................................... 7 
3.2 Project Changes due to COVID19 ................................................................ 7 

4 Methodology ........................................................................................................ 8 
4.1 WP1 Benefits Realisation Modelling ............................................................. 8 

4.1.1 Data Collection ....................................................................................... 8 
4.1.2 Ethics ...................................................................................................... 9 
4.1.3 Benefits Realisation Analysis ................................................................ 10 

4.2 WP2 Post-Morten Inspection ....................................................................... 11 
4.2.1 Deep Learning Analysis of images ....................................................... 11 
4.2.2 Quality inspection Using X-Rays .......................................................... 13 
4.2.3 Quality Inspection – Hyperspectral ....................................................... 16 

5 Results and Discussions .................................................................................... 18 
5.1 WP1 Benefits Realisation Modelling ........................................................... 18 

5.1.1 IT Enablers ........................................................................................... 18 
5.1.2 Facilitators ............................................................................................ 22 
5.1.3 Business Changes ................................................................................ 24 
5.1.4 Inhibitors ............................................................................................... 25 
5.1.5 Business Benefits ................................................................................. 27 
5.1.6 Investment Objectives .......................................................................... 29 
5.1.7 Business Drivers ................................................................................... 30 

5.2 WP2 Post-Mortem Inspection ...................................................................... 31 
5.2.1 Deep Learning for PMI ......................................................................... 31 
5.2.2 Quality inspection X-ray ........................................................................ 34 
5.2.3 Quality inspection hyperspectral ........................................................... 39 

6 Recommendations for Future Work .................................................................... 43 
7 Acknowledgements ............................................................................................ 45 
8 References ......................................................................................................... 46 



 
2 
 

1. Summary 

Poultry is the most widely consumed meat in the UK, and its effective inspection 

within processing facilities is essential to ensure regulatory compliance. Poultry 

inspection is performed manually and is extremely challenging due to the short time 

available to inspect each bird and the sustained level of concentration required.  

This feasibility project investigated how existing and new inspection technologies can 

be combined with advanced data analytics and incorporated into current meat 

inspection practices to deliver the 21st Century Meat Inspector.  

The feasibility project focused specifically on post-mortem inspection of poultry, 

adopting a benefits realisation approach to determine the requirements for any new 

technologies and ensure that business benefits are delivered to all stakeholders 

within the poultry chain.  

This interdisciplinary feasibility project included expertise in a variety of 

complimentary inspection technologies (Optical (visual, Near-Infrared, Infrared, 

Hyperspectral), X-ray and Ultrasonic) and IT-enabled benefits realisation 

management with the Hartree Centre (STFC), a food business operator (referred to 

throughout as Food Co.) and CSB as project partners. 

The main findings of the project include: 

• The main requirements for any new digital technologies to assist meat 

inspectors (MIs) and poultry facilities were identified as: clear business 

benefits; robust and reliable; easy to use and clean.  

• Deep learning can be used to identify abnormal colour from carcass 

images with a sufficient number of training images, but more efficient data 

labelling methods are required. 

• Hyperspectral optical and X-ray imaging methods can identify quality 

issues such as wooden breast and white stripe in chicken breasts. 
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2.  Introduction  

Chicken is the most widely consumed meat in the UK and used in a variety of meals 

and products ranging from Sunday roasts to salads, sandwiches and curries1. To 

meet this demand, in 2019, approximately 20 million chickens are slaughtered every 

month in the UK2. The primary processing of poultry typically includes the following 

steps: pre-slaughter, slaughter, scalding/plucking, evisceration, chilling, and cutting. 

EU regulation 854/20043 specifies that every slaughtered bird should undergo a 

Post-Mortem Inspection (PMI). This inspection should be performed by qualified 

meat inspectors (Official Auxiliary) on the carcass and offal of the bird. The meat 

inspectors operate under the responsibility of an Official Veterinarian (OV). Any birds 

identified to have signs of disease should be removed for a more detailed inspection 

by the OV. Also, the OV should perform a detailed inspection on a random sample of 

birds every day. PMI is a task that has always been performed manually yet has 

numerous challenges. Due to the large volume of birds processed at fast line 

speeds, meat inspectors only have a limited amount of time to inspect each bird.  

one Food Co. facility slaughters 250,000 birds a day and has two full-time meat 

inspectors working on each of their two processing lines. These inspectors must 

maintain a high level of concentration during their shift, but human error is possible 

given the volume of processing. Human inspection is also limited to visible inspection 

only and is a subjective decision based on the opinion and experience of the meat 

inspector.    

Another aspect of poultry processing that requires detection is birds that are Dead on 

Arrival (DOA). EU regulation 2019/6274 stipulates that meat is unfit for human 

consumption if it is from a bird which was dead before the slaughter phase of the 

process. Birds that are DOA are identified by operators tasked with placing the birds 

in shackles and are determined by the temperature of the bird. However, this is 

becoming increasingly challenging with new slaughter methods such as controlled 

atmosphere stunning, which occurs whilst the bird is still within its arrival container.   

The world is experiencing the fourth industrial revolution (Industry 4.0) which is 

focused on the use of Industrial Digital Technologies (IDTs) within production 

environments to deliver economic and environmental benefits through enhanced 
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productivity and efficiency. Industrial digital technologies include sensors, information 

technologies, robotics, augmented/virtual reality, and artificial intelligence (AI) and 

are underpinned by the enhanced collection and use of data. Despite IDTs having a 

predicted benefit of £55 billion to the UK Food and Drink manufacturing sector over 

the next decade5, their adoption has been significantly lower than other sectors (for 

example, aerospace and automotive). This lack of adoption has often been attributed 

to factors such as the levels of complexity within food materials and production 

processes and limited resources and expertise required for innovation. The latter is 

especially the case for small and medium-size enterprises that are prevalent within 

the sector. Another critical factor is how manufacturers select the most suitable new 

technologies to adopt, and how the business benefits are evaluated. 

Inspection technologies have been developed for applications within poultry 

processing. Most academic research has focused on optical technologies operating 

in the visible or near-infrared wavelengths. Much of this previous work has focused 

on inspecting chicken breasts once separated from the carcass with specific work in 

detecting quality issues such as wooden breast6, fatty acid content7, colour8, 9 and 

pH10. Research has also been performed related to safety issues, using optical 

techniques to quantify the number of microorganisms on the surface of chicken 

breasts11, 12, 13 and septicaemia in chicken liver14, 15. Other works have focused on 

imaging whole chicken carcasses off-line to identify different issues relating to meat 

safety16, 17. 

There has been a large body of research, primarily from the USA, focused on online 

multispectral (and in some cases hyperspectral) imaging technologies to classify 

birds as either ‘wholesome’ or ‘diseased’16,18–26. The majority of this work was 

performed in pilot facilities, but some research has been performed in full production 

facilities at line speeds of up to 70 birds a minute. These works generally utilise 

traditional machine learning classification methods that can identify wholesome or 

diseased birds with accuracies over 95%. Commercial imaging technologies exist in 

the UK from companies such as Meyn27, Marel28, and Baader29. These technologies 

utilise optical techniques and are used for meat grading or detection of quality 

issues. The project team visited the Food Co. facility in November 2019. It was found 

that they utilise optical imaging and X-ray technologies within their primary poultry 
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processing. These technologies are used specifically to detect hock burn, to grade 

the carcass or to detect the presence of foreign bodies in the final products. During 

this visit, it was identified that there is also a need for inspection technologies that 

could identify quality issues such as wooden breast or white stripe in poultry. 

Although research and commercially available technologies indicate that online meat 

inspection is possible, current work has focused on using inspection technology for 

only a single application (for example, detecting septicaemia or hock burn). There 

have been no studies that investigate the use of imaging technologies to address 

several business needs simultaneously or that determine the requirements and 

benefits from any innovative solutions using appropriate models. All previous work 

has also been performed outside the EU, where meat inspection guidelines vary. 

These are the challenges that this project aimed to address.   
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3. Aims and Objectives 

This project aimed to assess the feasibility of using sensor technologies and 

advanced data analytics for poultry inspection. The project planned to focus on PMI 

and DOA detection and test a range of different sensing technologies at Food Co. 

and in the laboratory. The project also planned to investigate the use of sensors to 

detect quality issues within poultry and utilise expertise from the Hartree Centre for 

advanced image and data analysis. To determine the requirements and benefits of 

any proposed new technologies, a benefits realisation model has been developed 

via a stakeholder engagement workshop. This project anticipated several novel 

aspects including: 1) The use of digital technologies for PMI including offal imaging. 

2) The use of digital technologies for DOA detection. 3) A benefits realisation model 

for sensing technologies within slaughter facilities. 4) The use of advanced machine 

learning methods (for example, deep learning) for PMI and DOA detection.   

Project-specific objectives 

• Develop a benefits realisation model to determine the requirements and 

benefits for poultry inspection technologies. 

• Determine the performance of new and existing sensor technologies for 

PMI. 

• Determine the performance of new sensor technologies for DOA. 

• Assess the feasibility of combining different sensor technologies and 

analytics for multiple applications within poultry inspection (for example, 

PMI and wooden breast).  
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3.1 Project Time Plan 
 

Table 1: Project time plan 

3.2 Project Changes due to COVID19 

The ongoing COVID19 pandemic resulted in closures of university laboratories and 

meant that site visits were not possible at the Food Co. This resulted in the following 

changes to the project plan: 

• Interviews were held online with stakeholders instead of an in-person 

workshop (T1.1 and T1.2, Table 1) 

• It was not possible to perform any imaging at Food Co. site for PMI (T2.2). 

All other WP2 tasks were completed. 

• It was not possible to perform any IR imaging or analysis (WP3, Table 1) 
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4. Methodology 
4.1 WP1 Benefits Realisation Modelling 

This project engaged three main stakeholders. 

Regulator is a government body responsible for ensuring standards and safety 

issues are monitored and controlled. For this study, the Regulator is the funder for 

the project, they provided access to individuals for an interview and a nominated 

project manager who facilitated all activities and attended project review meetings. 

Food Co. is a UK based food manufacturing business with several divisions 

covering an array of food products. One of their divisions focuses on the processing 

of poultry, which is the area of the business this project is focused on. Food Co. 

supported this project by allowing access to one of their poultry processing sites for 

on-site testing of technologies, providing participants for an interview, and providing 

chicken breasts for lab-based experiments. They also provided a subject matter 

expert who facilitated all activities and attended project review meetings. They 

represent an influential organisation within the poultry processing industry, had a 

strong working relationship with the Regulator, and desired to support research 

within the industry.  

Software Co. is a leading provider of services to the food and beverage industry 

globally, offering complete enterprise resource planning (ERP) systems, including 

both software and hardware. They have a focus on automation and enabling the 

effective use of data throughout the enterprise. They supported the project through 

participation in our research interviews, providing an additional perspective to 

understanding the broader problem. 

4.1.1 Data Collection 

The primary source of data for this study was interviews with key individuals from 

across the stakeholder organisations. Newman advocates for careful consideration 

when choosing participants to ensure those selected are informative. As such, we 

were careful to include individuals from a range of organisational levels and roles, 

although we were constrained by the access granted to us by the respective 
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organisations. Table 2 provides an overview of participants and the length of their 

interviews.  

Table 2: Summary of participants and interviews 

Interview No. Organisation Role  Interview Length 
1 Food Co. Food Co. Manager 1 60mins 
2 Regulator Regulator Employee 2* 28mins 
3 Software Co. Software Sales 3 38mins 
4 Regulator Regulator Employee 2* 60mins 
5 Food Co. Food Co. Manager 5 60mins 
6 Food Co. Food Co. Manager 6 60mins 
7 Food Co. Food Co. Employee 7  55mins 
8 Regulator Regulator Manager 8 45mins 
9 Regulator Meat Inspector 9 52mins 
10 Regulator Meat Inspector 10 60mins 
11 Regulator Meat Inspector 11 80mins 

*This person was interviewed twice. 

Orientation interviews were carried out with key members from each stakeholder 

organisation (Food Co. Manager 1, Regulator Employee 2, Software Sales 3) to 

familiarise them with the project and provide the project team with a better 

understanding of each organisation's interest in the project. Interviews were 

recorded with the interviewee's permission.  

An interview schedule was designed using categories from the Benefits 

Management literature and early analysis of orientation interviews to shape the types 

of questions posed. Key areas of interest were highlighting any tensions between 

stakeholders, any contradictions or shared concerns in stakeholder needs and 

understanding the existing issues being faced. The interviews were semi-structured 

to allow participants to share their insights and for the researcher to maximise the 

opportunity to explore individual perceptions and experiences, allowing for new 

questions to emerge. As with preliminary interviews, focused interviews were carried 

out remotely, recorded with the participant’s permission, and automated caption files 

were used for coding.  

4.1.2 Ethics 

All participants in this study were asked to complete an informed consent form, 

supported by a participant information sheet explaining the purpose of the research 
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and how their data would be used. This approach complies with Loughborough 

University ethic procedures, and this study was approved by the ethics committee 

before interviews commenced. All interviews were confidential, and data has been 

anonymised. 

4.1.3 Benefits Realisation Analysis 

The analysis technique used in this study applied a benefits realisation lens to inform 

the analysis.  

Benefits Management is a process of ensuring potential benefits of Information 

Technology (IT) usage are achieved. A "benefit" in this context is a measurable 

outcome from IT usage, which is valuable to stakeholders and organisations. 

Benefits Management is interested in several aspects of the problem.  

First, why an IT investment is made (Drivers), for example, IT investment to ensure 

the Regulator has effective measures in place to gather and use data for informed 

decisions, as well as promoting greater accountability onto industry for the product 

they produce, therefore ensuring consumer safety, which promotes confidence in 

consumer choices.  

Second, the goal of the IT investment (Investment Objectives), for example, the 

proposed investment will increase the effectiveness of quality control, ensuring the 

highest proportion of products meet or exceed retailers’, regulators’ and consumers’ 

standards/expectations.  

Third, how the IT investment will help to achieve the goal (Benefits), for example, the 

inspection process is less strenuous for the meat inspector (auxiliary or vet), 

chances of human error reduced by automating the identification of a number of 

quality issues, improve the supply chain by gathering data to feed back into the 

process to address quality issues from the outset.  

Fourth, how the way we work needs to adapt to achieve the goals and use the new 

IT (Business Change), for example, adjusting the role and responsibilities of the MI, 

ownership / or management of new IT.  
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Fifth, what support is needed to roll-out the IT and achieve the change (Enabling 

Change), for example, training on using and maintaining the new IT and the resulting 

data and changing the inspection process to embed the new IT into the production 

line.  

Finally, sixth and seventh, what will help and what will hinder the success of an IT 

investment (Facilitators and Inhibitors), for example, improving the day-to-day work 

of the MI and reducing stress, or fear that the new IT may negatively impact jobs. 

Early benefits management analysis was done soon after the orientation interviews 

to ensure use of appropriate terminology, and to identify high-level themes to explore 

and use in subsequent interviews. This high-level coding was performed using NVivo 

using transcripts that were generated from the automated caption facility in MS 

Teams. These codes provided the foundation for a codebook.  

After undertaking the main data collection interviews, the automated caption 

transcripts were coded using the codebook in NVivo. These codes were then 

organised in a matrix display that included each of the BRM categories (Drivers, 

Benefits, Facilitators etc.) and the coded interview data were mapped to these 

categories. 

4.2 WP2 Post-Mortem Inspection 
 
4.2.1 Deep Learning Analysis of images 

All images were provided by Food Co. and taken from a grading camera system and 

focused on skin colour. Images were provided in three batches, each batch recorded 

on a different day and with a different amount of images (Table 5). Details on the 

origin of the birds were not provided for each batch. It should be noted that the 

grading camera was down stream of the PMI so any birds identified to have specific 

conditions will have been removed. However, the purpose of this preliminary work 

was to determine if deep learning methods could be used to identify differences 

between birds from images provided from on-site imagining. Skin colour was chosen 

as the focus area as some poultry conditions (for example, abnormal colour) are 

related to colour. Supervised machine learning methods such as the deep learning 

techniques used in this work required labelled data to train the models. The image 

analysis work in this project was based on identifying birds which had darker than 
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average skin or areas of red (Figure 1 and Figure 2) and each image was labelled 

normal or dark/red by University of Nottingham researchers. For each batch the data 

was split into training, validation and test sets. Training data is used to train the deep 

learning model and validation to tune the hyper- parameters. The test data is used to 

provide an assessment of the model’s performance with data not used in the training 

or validation. 

Table 3: Batches of chicken taken at different times  

Batch 1 Training  Validation Test 
Normal 134 58 81 

Dark/Red 50 22 40 

Batch 2 Training  Validation Test 
Normal 717 307 432 

Dark/Red 361 155 270 

Batch 3 Training  Validation Test 
Normal 440 188 464 

Dark/Red 185 79 181 

Figure 1: Images from grading camera labelled as normal skin colour 
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Figure 2: Images from grading camera labelled as dark or red areas 

Image analysis was performed using the ResNET and AlexNET Convolutional 

Neural Networks (CNN) in MATLAB. These types of CNNs were chosen as they 

have relatively simple architecture, and less computational time. Consequently, they 

are easy to train especially in limited GPU computers. Convolutional Neural 

Networks are a deep learning method with built-in convolutional layers which act as 

feature extractors to train the models.  

The ResNET 18 CNN was used with the following parameters: 

• Down sampling and image augmentation was used to address the 

challenge of an unbalanced dataset (far fewer images labelled as 

dark/red) 

• 18 total layers containing 5 convolutional layers followed by 13 fully 

connected layers 

• Learning rate used = 1x10-5 

AlexNET was used with the following parameters: 

• Image augmentation was used to address the challenge of an unbalanced 

dataset (far fewer images labelled as dark/red) 

• 8 total layers containing 5 convolutional layers followed by 3 fully 

connected layers 

• Learning rate used = 1x10-5 

4.2.2 Quality inspection Using X-Rays 

Transmission X-ray computed tomography (CT) images of the whole breast portions 

were captured using a microfocal X-ray source (X-Tek SR125) and a flat panel 

detector (Rayence 1215A).  Forward projection images (for example, Figure 3 left) 

were collected at 1° intervals and 3D images (for example, Figure 3 right) were 

reconstructed by standard filtered back projection.  The relatively thick pieces of 

chicken combined with the poor low energy response of the panel detector required 

that high energy (100 kVp) X-rays were used to penetrate the samples. As a result, 
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the contrast in the projection images was poor which means the reconstructed 

images fail to show internal structures. 

Figure 3: Left) transmission X-ray of chicken breast and Right) reconstructed slice 

failing to identify any internal structures 

To overcome this limitation, we collected further X-ray CT images using a different 

instrument which has the same X-ray source but a detector that is more sensitive to 

contrast at lower kVp. In this case samples were cut into smaller pieces (disks of 50 

mm diameter) in order to fit into field of view. The smaller samples were packed into 

a custom 3D printed holder to ensure consistency as shown in Figure 4 top. This 

technique was more successful in identifying internal features and showed the 

effects of wooden breast on the internal structure of the tissue.  Figure 4 bottom left 

and bottom right show a comparison between a fillet affected by wooden breast and 

a normal control respectively. Wooden breast is a muscle quality disorder which 

results in regions of increased firmness in the breast. The wooden breast specimen 

demonstrates a greater degree of texture (indicated by the red arrows) where there 

are quasi-periodic transitions between higher and lower density tissue over length 

scales of a few mm. The control sample is overall more homogenous with a 

consistent internal structure. A number of control and wooden breast samples were 

measured (4 of each) and similar features were observed in each. 
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Figure 4: Top) Example of prepared sample, and reconstructed CT slice of bottom 

Left) wooden breast and bottom Right) control sample.  

While transmission X-ray imaging is useful for showing variations in tissue morphology 

(which has yielded some interesting results here), the output is based solely on the 

samples’ affinity for absorbing X-rays. It does not reveal anything about the underlying 

molecular structure.  X-ray diffraction (XRD) is a technique that can be used for this 

purpose. 

To carry out XRD analysis, a cross-sectional slice of each sample was taken at the 

thickest point (where wooden breast is likely to be most prominent).  The section was 

placed in a 3D printed mesh-like holder (as shown in Figure 5) and diffraction 

measurements were made at multiple locations across the sample.  XRD data were 

collected in transmission mode.  A narrow beam of X-rays was incident on the sample 

where there were holes in the mesh holder.  The X-rays that scattered from the sample 

were collected using a spectroscopic detector (one that measures energy) and 

positioned on the side opposite the X-ray source and XRD spectra were produced by 

summing the detected counts appropriately.  The resulting XRD spectra were 

subjected to principal component analysis (PCA) in order to determine if there were 
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any distinguishing features that could be used to identify different tissue components.  

PCA is a well-understood technique that can be used to describe the variance in a set 

of data and can be used to group/separate data that are similar/different.  In this case, 

PCA did not show any conclusive separation which indicates that there is no obvious, 

unique feature in the XRD spectra related to normal or wooden breast.  This is not 

surprising.  In previous work, meaningful results can only be obtained by PCA (and 

related methods) when constraints are introduced that are based on the physical 

processes involved, the sample properties and the geometry of the instrumentation. 

Figure 5: XRD setup showing slice of chicken breast held in place with grid. White 

square shows location of incoming beam. 

4.2.3 Quality Inspection – Hyperspectral  

 

Images were recorded using a Near-Infrared (NIR) camera (FX17, Specim, Oulu 

Finland) operating between the 935-1718 nm wavelengths. This camera is 

thermoelectric cooled with an Indium gallium arsenide sensor. The camera has an 

integration time of 3.5 s, 224 wavelength bands, a signal to noise ratio of 1000:1 and 

produces an image of 981 x 640 pixels with a framerate of 62 frames per second. 

Whole chicken breasts samples were images for: healthy (normal), wooden breast, 

and white stripe. Chopped samples (5x5 cm with the thickness as the whole breasts 

which varies all over the breast) for: healthy (normal), wooden breast, and white 

stripe. 
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Each hypercube data includes 224 images (one per each wavelength) of each 

sample. For each sample, the image at 1106 nm was used to generate the binary 

mask image that was applied to all images in the hypercube. The mean reflectance 

spectra at each band was then calculated. The previous step was repeated on the 

other bands to form the mean reflectance spectra for the samples.   
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5. Results and Discussions 

5.1 WP1 Benefits Realisation Modelling 

Through the analysis of the in-depth interviews carried out for this project (see Table 

2), a Benefits Dependency Network (BDN) diagram was developed (see Figure 6), 

which illustrates important factors relevant to the realisation of benefits relating to the 

adoption of IDTs within the poultry processing industry. In this section, each of the 

categories within the BDN is described, and the context-specific findings for each 

presented along with supporting evidence.  

5.1.1 IT Enablers 

Five IT enablers were identified when considering the adoption of new technology for 

poultry inspection. First, any system selected must be simple to use where it requires 

human interaction. Concerns were raised based on previous failed attempts to install 

new technology, which had added complexity for the inspector. 

This IT enabler is related to two facilitators: technical support from the manufacturer 

and training in using the technology and new process. These facilitators will be 

discussed in the following section.  

Second, the technology must be reliable. Given the high-pressure environment 

within which poultry inspection occurs, at large quantities and exceptional speeds, 

any technology must be reliable "from day one". A particular concern from meat 

inspectors was that the technology must be at least as reliable as the human 

inspector, many of whom have decades of experience. Scepticism was raised 

regarding how feasible it would be for any technology to be capable of the same 

level of inspection as human inspectors. As such, any technology must be 

demonstrably reliable from the outset, and there must be a well understood backup 

if, for any reason, the system should go down. Alternatively, the technologies could 

be used to augment the current meat inspector task to reduce the burden on the 

workforce. The impact of stopping the line has implications throughout the supply 

chain,  the welfare of those still in containment (they are alive when they arrive at the 
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plant), through to the plant line where birds need to be in the chiller and scalding 

areas for defined periods. Any changes to these timings can mean the loss of vast 

quantities of product. 
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Figure 6: Benefits Dependency Network.
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Third, it must be robust. In other words, the technology needs to be fit for the 

environment in which it is placed.  the plants within which these technologies are 

being installed have specific food safety concerns. Consequently, they are regularly 

cleaned using corrosive chemicals and large quantities of water. In addition, 

depending on where the technology is installed, there may be significant variations in 

environmental conditions such as humidity and temperature. This IT enabler feeds 

into the need for the technology to be reliable, as described above. 

Fourth, the requirements must be well understood. Several considerations for the 

requirements of the system were highlighted, including:  

• Compatible with existing systems across multiple stakeholders 

• Compatibility with future systems 

• Careful location of the technology, for example, should it be located before 

or after the inspector, or both?  

• Whether automatic removal of the birds can be achieved 

• How to manage variation within birds in terms of size and how they are 

presented on the line  

• The design of the human-IT interface, for example, the inspector needs 

enough space to step back from the line to observe for issues and room to 

step towards the line to remove a bird. The technology cannot get in the 

way of this carefully choreographed movement.  

The current process must be understood from both the inspector's and Food Co.’s 

perspective to fully appreciate the requirements and constraints within which the 

technology must seamlessly interface. 

Fifth, the technology must demonstrate a clear benefit or solve an immediate 

problem. This is linked to the need to understand the requirements as just described. 

From a Regulator perspective, the benefit could be that technology in this capacity 

will promote safe food production, which in itself will provide consumers with greater 

confidence. For Food Co., the benefit would be the demonstration of the company 

taking more accountability for their product and providing more robust assurance to 

the Regulator and consumers alike. However, Food Co. operates in a highly 

competitive sector with extremely tight margins. This context is highly challenging for 
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experimentation and innovation. In addition, to achieve buy-in from those on the 

ground using or interfacing with the technology, it must provide some benefit or solve 

an existing problem to be perceived as 'worth the cost'.  

There is also the question of where the most significant benefit might come from 

solving different problems. Although from an external perspective, it may appear as 

though automating the identification of conditions could have the most significant 

impact, many other areas would benefit from modernisation.  the data capture 

method regarding rejections is currently done manually using clipboards and 

requires repeated data entry. From an MI’s perspective, it would be of significant 

benefit to use technology to improve this aspect of their job.  there are automated 

systems used in the red meat industry (namely pig production) where rejections are 

logged electronically (systems such as the Hellenic System). The Food Business 

Organisations (FBO) such as Food Co. typically own these types of systems, not the 

Regulator. There may be the possibility for this to be used in poultry plants but would 

require the FBO's implementation (Regulator employee 2). So, consideration must 

be given to whose problem is being solved and who is likely to be motivated to invest 

in solving that problem. 

5.1.2 Facilitators 

Facilitators are enabling changes to cover the support needed to roll-out the 

IT and achieve the change. These are one-off changes carried out during the roll-out 

process. First, it was clear that providing clear messaging and a visible strategy 

would be necessary to achieve the goal. In particular, consulting with the trade union 

from the outset and careful consideration of appropriate messaging to gain buy-in 

from MIs was highlighted. 

It was noted by the MIs themselves that in the past, there had been several 

messages around changes to how meat inspection is carried out, many of which 

have failed to come to fruition. In many cases, there have been concerns around job 

security which has led to resistance and disengagement. As such, clear messaging 

and a visible strategy demonstrating how any changes will contribute towards the 

end goal and what the end goal is, is imperative. 
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Second, careful planning and contingency must be considered. Poultry processing 

plants operate under high pressure and high speeds, and each stage of the process 

is carefully choreographed. Even slight variations to this can cause significant knock-

on effects throughout the system. Consequently, any changes must be carefully 

planned to minimise disruption to the day-to-day activities, especially during the roll-

out phase. A trial is required to pilot new technology, plant selection should be 

considered based on potentially lower volume plants and/or the flexibility within plant 

systems. It was also noted that business-critical events might mean planned 

activities have to be cancelled at short notice. Therefore, contingency and backup 

plans must be in place for any trial or roll-out activity. 

Third, training in using the technology and understanding any new process should be 

carried out to support the roll-out and adoption.  In the past, new technologies have 

been installed over the weekend, and front-line staff have been expected to get up to 

speed with how to use this on their own. In some cases, this has meant it has been 

difficult for front-line staff to troubleshoot issues and has undermined their trust in the 

results of the technology as there is little understanding of how it works. 

Training would also need to be provided for Regulator staff. Although the Regulator 

staff do not need to know the full details of a Food Co.’s technological process, they 

need to understand the main steps. Further, for any Food Co. technology used by 

the Regulator, there would be a need for colleagues to be trained in its use. 

Fourth, technical support from the technology manufacturer should be agreed on an 

ongoing basis to ensure users can troubleshoot issues as they occur in a timely 

fashion. This is in place for many of the systems already installed in the plant and, as 

such, is an established way of working. As already noted, any problems with the 

system can have significant repercussions, and stopping the line comes at a high 

cost, so it is essential that troubleshooting can be done quickly.  

Fifth, an understanding of what data is needed should be reached. There are 

multiple stakeholders to consider, each with their own needs and priorities. From 

farmers to the Regulator and Food Co., there is a need to understand how data is 

accessed and used throughout the supply chain, where synergies might be 

achieved, and where unnecessary or unused data can be removed.  
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5.1.3 Business Changes 

Business changes relate to how work needs to adapt to achieve the investment goals 

and use the new IT. Several business changes were suggested to implement the 

21st Century Meat Inspector. The first was that updates to the inspection process 

would need to be made to account for any new technology. These changes would 

need to consider Safe Systems of Work and Health & Safety (Risk Assessments). 

The processes in place are carefully choreographed and controlled, as expected with 

a complex regulated production line. Changes to the inspection process, as well as 

knock-on effects to the rest of the line, must be carefully understood. 

Along similar lines, there is a need to update the roles and responsibilities of several 

critical positions, including Quality Assurance (QA), Animal Welfare Officer (AWO), 

MI, and Plant Inspection Assistant (PIA). Each of these roles currently takes 

responsibility for some part of the inspection process and moving towards automated 

checks would change the nature of their position and the tasks they were required to 

carry out. It was noted that these changes could include freeing up more time for 

these individuals to do more than simply the essential tasks. Changes would likely 

need a lot of consultation and a clear vision of roles and responsibility from the 

industry and Regulator.  

In addition, business processes must consider succession planning for those trained 

in using technology. There were examples given in interviews of other technologies 

which had been installed, with little consideration for those who would come to take 

responsibility for it. When the member of staff who knew how the technology worked 

moved to another site, there was a knowledge gap that caused issues when there 

were emergencies, such as a power cut that caused the systems to return to default 

settings.  

A further consideration could be the organisation responsible for organising and 

delivering the training and the associated costs of training design and delivery.  

should this be provided by the software manufacturer, the FBO that has installed the 

software or the Regulator that use the software? 

Linked to changes to the inspection process and updates to roles and 

responsibilities, there could be a shift in the responsibility for safety. Responsibilities 
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are currently set out in legislation, and as a result, changes would need to be made 

across several stakeholders to adapt to new technology. Consideration must also be 

given to who 'owns' the technology from a financial point of view and how this might 

impact food safety and the provision of data. 

There is also a need to move away from data capture and towards data usage to 

maximise the benefits of new technologies. One benefit identified from modern 

technology was the increased amount of data that could be captured. However, it 

was also acknowledged that existing data was not necessarily used productively. 

Without the appropriate structures to use and act on data captured, opportunities are 

lost, and data capture activities wasted. Businesses need to change from a mindset 

of capturing data 'because we can' to considering carefully how data might inform 

actions or answer pertinent business questions.  

5.1.4 Inhibitors 

Participants identified seven inhibitors. First, the limitations of technology were a 

concern. Many of the MIs we spoke to described how, with experience, meat 

inspection became second nature. They explained how conditions would "come to 

you" rather than the inspector seeking them out. There was scepticism that this could 

be automated or that the human-technology interaction would be feasible.  having 

identification automated but physical removal carried out by a human. 

Limitations of the technology also included the limited number of conditions being 

selected for automation, which would mean a human MI would need to remain on 

the line to identify other conditions, as well as the need for a human to physically 

remove birds from the line and place them into the appropriate category bin. 

Automating this part of the process could require the entire factory to be redesigned, 

which would be a significant investment. 

Second, the multiple stakeholder organisations involved in the meat inspection 

process adds complexity that may inhibit changes to the process. The Regulator, 

FBO, retailers and consumers each have their own needs, concerns, and drivers. 

These do not necessarily align.  
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To achieve any change to the processes and legislation surrounding meat 

inspection, a systemic approach is required with collaboration across these 

stakeholders. Considering the financial pressures facing many FBOs, a clear 

business case would need to be put forward. For government bodies such as the 

Regulator, assurances on safety and reliability are paramount. For these reasons, 

the third inhibitor, the rate of innovation within this sector, is seen as particularly 

slow.  

There were descriptions of existing processes within meat inspection that were far 

behind in terms of modern technology.  inspectors use five bar gates and scraps of 

paper to record rejections, manually entering this data into multiple other systems at 

the end of their shift. It is clear that if tasks such as this are yet to be modernised, 

steps to take meat inspection into the 21st century may be inhibited. 

Fourth, it was commonly referenced that retailers have all the power and influence 

over how the FBO operates. Consequently, buy-in from FBOs may be limited if 

retailers are not bought in. Any proposed modernisation to the meat inspection 

process would need to provide sufficient assurance and/or benefit from the retailer's 

perspective.  

Fifth, there are likely to be legal issues around who has responsibility for food safety, 

the technology, and the data. This is linked somewhat to the previously reported 

business change around who takes responsibility for food safety. In the current 

process, the MI is employed by the Regulator, and the responsibilities of the MI and 

OV are set out in legislation. As a result, any changes to these roles would require 

the legislation to be changed, which can be difficult and time-consuming to achieve. 

There are also considerations around who owns the data and how that data is 

reported. Even aspects of the process, such as how the data is stored and who has 

ultimate ownership of that data, would need to be considered and legislated.  

Sixth, there is likely to be push back on role changes by those impacted, such as the 

MI and PIA. For some, there will be concern over job security, with a fear that by 

automating the detection of conditions, their skills and expertise will no longer be 

required. For others, it may be push back around learning new skills, such as how to 

interact with modern technology. 
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Finally, due to the nature of their business and the pressures of the production line, 

FBO sites have no time for experimentation, which could make the development of a 

suitable technological solution difficult. Studies have shown problems with solutions 

developed in the laboratory which are not capable of transitioning to industry. 

Without the ability to work with FBOs on-site to trial and experiment with potential 

solutions, this remains an inhibitor.  

5.1.5 Business Benefits 

Business benefits are how the IT investment will help to achieve the goal. Several 

business benefits were found concerning introducing new technology, such as AI, 

into the meat inspection process. Linked to the business change of moving away 

from data capture and towards data usage, business benefits would include 

improved data usage and reliable measurements in real-time. 

It was evident from interviews that there are significant gaps in the current processes 

and existing systems that make data usage difficult.  many systems across different 

stakeholders (such as Food Co. and Regulator) are not integrated. In addition, the 

manual nature of the data input process means data is not entered onto these 

systems until the end of the day or even the following day. As a result, this data 

cannot be used in real-time to act on insights relating to incoming issues (for 

example, a farm load with hock burn).  

If data capture were to be automated, this would have the additional benefit of 

simplifying data capture. Currently, multiple individuals are involved in capturing and 

inputting data into various systems, which increases the chance of human error. 

Simplifying this would be a significant benefit.  

New technology could also enable farm interventions by improving the access and 

usage of data. The FBO needs to provide reliable and timely data back to farms to 

allow interventions once flock issues have been identified.  if a farm has a problem 

with excessive hock burning, which can only be seen after de-feathering, this is likely 

to affect the whole flock and requires action to be taken at the farm. Sharing data 

with the farm may also mean less impact on food production at the FBO and help 

promote the quality of the product being produced. 
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Improved technology would provide the business benefit of providing fast and 

reliable evidence of issues such as this, which can be easily relayed back to the 

farm. This, in turn, will enable earlier identification of issues. The later issues are 

found, the more this costs the Food Co. and the farm. When a flock are found to 

have issues, this is docked off the payment made back to the farm. In many cases, 

these birds cannot be used as intended, which leads to a supply issue for the Food 

Co. To mitigate the risk of this, the Food Co. may overstock, which can be costly. If 

issues can be identified earlier and interventions made sooner, this could improve 

the supply chain and reduce losses at both the farm and Food Co. 

An added benefit related to farm interventions is providing more defensible outcome 

measures (trust data). Tensions were reported between the Regulator, Food Co., 

and farms regarding being able to defend the outcome measures (reports on 

rejections and conditions). Given the cost to farmers of having birds reported with 

issues, they will challenge the reporting process.  

Where technology can be used to improve the accuracy of inspection and provide 

the evidence to back up reports of issues ( photos and an audit trail of the farm, 

house and load), this can move the conversation away from the accuracy of the data 

and towards improving the conditions on the farm.  

In addition, automation of the inspection process may reduce rejections by reducing 

human error where healthy birds are incorrectly rejected or by reducing the instances 

of retailers rejecting products later down the line where poor quality birds have been 

missed. The former results in fines for farmers, the latter in fines to Food Co. from 

retailers. Any improvement to the accuracy of inspection will save time and money 

and increase assurances for regulators that any food safety issues are reliably 

identified.  

Another potential benefit to come from the use of new technology is to maintain 

trust/relationship with retailers. For Food Co., this is paramount. Retailers are highly 

concerned with ensuring food safety and food quality is maintained at their suppliers 

to avoid scandal and reputational damage. Any assurance or improved reliability of 

data that can be achieved through the use of new technologies improves this 

relationship. For Food Co., their reputation and relationship with their retailers is one 

of their most pressing concerns.  
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The final benefits to be identified are the diversification of the MI role and freeing up 

AWO/QA/MI to be more proactive. There are significant time and resource 

constraints in the current system, which means that each role is at capacity simply 

doing those activities, which are essential from a legislative and food safety 

perspective. There is very little time for proactive activities, which might improve the 

system long term. If some of the activities carried out by these individuals could be 

automated, this would provide the opportunity for their roles to be diversified, and 

allow them more time to be proactive, carrying out activities which the business 

would like to do, but at present does not have the capacity for. This might include 

time for innovation and increased quality control. The MI may take more of an 

auditing focus across FBOs rather than carry out the inspection directly to ensure 

standards are being met and the technology is reliable.  

5.1.6 Investment Objectives 

Investment objectives, in this context, are the goals associated with an IT 

investment. Many of these have already been touched upon through earlier sections, 

and as such, they will be recapped here. Others are more independent and will be 

described in more detail.  

By adopting new technologies, such as AI, the FBO and the Regulator aim to 

automate data capture, which will improve data quality/accuracy, increase inspection 

accuracy/efficiency and reduce time and resource constraints. They will also seek to 

act on data in real-time. Each of the benefits associated with these goals has been 

described in more detail in the previous sections.  

There is also the goal of protecting or improving reputation, which, as has already 

been described, is a crucial concern for FBOs. Any technology which can provide 

additional assurances on food safety and quality goes towards reputational 

protection and increasing trust within the supply chain. 

The introduction of AI and automation would also augment the existing workforce, 

which require holiday and sickness provisions. This is particularly apparent in the 

current COVID19 crisis. Technology can be used in place of humans or enable 

human interaction off-site (such as remote access). This would create flexibility in the 

workforce and improve the consistency with which standard tasks are carried out.  
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The final investment objective is to see quality improvements. Providing high-quality 

products ensures the FBO's reputation is upheld and that its relationship with 

customers is maintained. Both of these ultimately feed into reducing costs and 

maximising profit, as if the retailer rejects products due to poor quality, the FBO pays 

a fine. If an FBO's reputation is damaged, this can mean the loss of customers. 

Consequently, quality improvements are a significant investment objective for 

adopting technology in the meat inspection process.  

5.1.7 Business Drivers 

Through this discussion of the IT enablers, Facilitators, Changes, Inhibitors, Benefits 

and Investment Objectives of applying new technology to meat inspection, we have 

identified three primary drivers. 

First, a need to modernise the food industry to remain progressive, competitive and 

resilient, and second, delivering exceptional standards of food safety/welfare are 

drivers for adopting new technology. This is an industry that could benefit greatly 

from taking advantage of modern technological innovations. The Regulator is keen to 

make the most of the additional food safety assurances which come with automation 

and AI, which is why they have begun a digital transformation. Although the UK has 

an excellent reputation for food safety and animal welfare, it was noted that in 

Europe, FBOs generally have a higher level of modernisation when compared to the 

UK. To compete in a global market, the UK must invest in innovation to promote 

food, public and animal safety.  Food safety is a concern shared across all 

stakeholders, from the consumer through to the farmer, with the knock-on effects on 

reputation, cost, and trust.  

Third, there is a drive to reduce inspection subjectivity. Given the nature of 

inspection, the variation in inspectors' experience, and the variance in the look of the 

birds being inspected, adds subjectivity to the task. This subjectivity may cause 

issues across shifts and sites and reduce the trust in data accuracy based on these 

assessments. 
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5.2 WP2 Post-Mortem Inspection 

5.2.1 Deep Learning for PMI 

The classification results from ResNet-18 for all three batches of images can be 

seen in Figures 7-9. The overall model classification accuracy was best for the third 

batch with a value of ~90%. The lowest classification accuracy was batch 1 which 

was most likely due to the lower number of images available in this batch to train the 

models. For all three models the biggest errors were the wrong classification of 

normal images as dark/red. This result would lead to acceptable carcasses being 

classified as unacceptable, although as the technology is anticipated to be a pre-

screening step this would be acceptable and preferable to the method classifying 

dark/red images as normal. In addition to the overall accuracy, there were two other 

criteria used to judge the models and both can be calculated from the confusion 

matrix. The first is recall which is the class-wise correctly identified samples, i.e., 

green cells, divided by the total samples in the row. The second criterion is the 

precision which is the class-wise truly identified samples, i.e., green cells, divided by 

the total samples in the column. 
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Figure 7: ResNet-18 batch 1 classification results. 
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Figure 8:  ResNet-18 Batch 2 classification results. 

Figure 9: ResNet-18 batch 3 classification results. 

Figures 10-12 present the classification results from the AlexNet model. These 

followed the same general trend that batch 1 had the lowest classification accuracy 

and batch 3 had the highest classification accuracy and the majority of the incorrect 

classifications were normal carcasses classified as dark/red. In general, the AlexNet 

results were slightly lower than the ResNet-18 results for all three batches. The 

reason for such a result is that it is known that the deeper the CNN is, the higher the 

accuracy, and the less the possibility of overfitting30. The main limitation with this part 
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of the work is that all images were recorded once the PMI had been performed so 

the manual labelling of data was performed by University of Nottingham researchers 

who are non-poultry experts and were classifying images as abnormal based on 

marginal differences in skin colour. It is envisaged that if the images were collected 

in a consistent manner during the actual PMI there would be a much greater 

difference between the abnormal and normal carcasses and the models would 

achieve a much higher accuracy. In addition, recording images whilst PMI was 

performed by a meat inspector would enable more accurate labelling of the images 

as the meat inspectors are trained to identify all conditions and have experience and 

expertise lacking in the University of Nottingham researchers. If it would not be 

feasible to have a meat inspector label all images unsupervised and semi-supervised 

machine learning approaches call also be explored.    

It is still nevertheless envisioned that in the first instance, the imaging and 

classification could act as an initial screen to identify carcasses where a condition 

may be present and that these could be highlighted to a meat inspector for a more 

detailed inspection and decision. This screening would aid MI screening, allowing 

them to spend more time inspecting carcasses suspected to have a condition. 

Figure 10: AlexNet batch 1 classification results. 
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Figure 11: AlexNet batch 2 classification results. 

Figure 12: AlexNet batch 3 classification results. 

5.2.2 Quality inspection X-ray 

Results were analysed via clustering the recorded XRD profiles. As with all clustering, 

the motivation was to group together similar observations while separating dissimilar 

observations and in this case to attempt to find natural grouping of material quality. A 

first-derivative pretreatment of the profiles was applied as a pre-processing step as 

this was found to give greater contrast between the XRD profiles than using the raw 
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data without pre-processing. The results of pre-processing the XRD profiles for a 

random selection of breast tissue measurements are shown in Figure 13. 

Figure 13: A random sample of 10 XRD measurements from a set of 10 chicken 

samples (above) with the processed profiles (below).  

The processed profiles were then clustered using the K-means clustering algorithm 

using four clusters, the results of which are shown in Figure 14. As can be seen, the 

clustering segments the images spatially, rather than apparent random assignment of 

pixels to clusters, indicating that meaningful patterns in the data are being extracted. 

The cluster centroids in Figure 14 show the mean profiles of each of the four clusters. 

This analysis stops short of determining the meaning of the clusters but indicates 

spatially dependent information, potentially relevant to the material composition and 

quality of the samples, could be derived from X-ray diffraction.  
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The cluster analysis does not know anything about the ground truth of the specimens.  

It only serves to place the XRD spectra into groups with spectra that are similar.  The 

physical meaning of these groups cannot be determined without further analysis.  

Typically, this would involve having spectra measured for all the different types of 

tissue (for example, normal muscle, connective tissues, fat, woody breast, etc.) 

against which the cluster can be compared and/or be used to enforce some boundary 

conditions on the analysis. 

Despite not being able to say “cluster 1 means muscle with woody breast” (and so on), 

what we can say, is that the clusters seems to be spatially correlated.  If they were 

meaningless, then we might expect the clusters (or at least the spectra’s assignment 

to a particular cluster) to be randomly distributed across all samples.  This isn’t the 

case here.  The origin of the spatial correlation is unclear at this stage.  As well as 

betting potentially correlated with meat condition, it may also have influence from 

properties like sample attenuation and water content, which are not related to meat 

condition/quality. 
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Figure 14: K-means clustering of diffraction data that has been pre-processed using 

first derivative smoothing (top sub figure). The 10 chicken breast samples (1-4 = 

normal, 5-8 = white stripe, 12 = woody breast) have each measurement position 

clustered to one of four clusters. The corresponding centroid profile of each cluster is 

shown in the lower sub figure. 

We have carried out some preliminary measurements using a limited number of 

samples to investigate the efficacy of X-ray imaging and diffraction to be able to 

distinguish between normal chicken fillets and those affected by wooden breast 

syndrome. 

Results suggest that 3D X-ray imaging (CT) can identify a variation based on the 

macroscopic ‘texture’ present in the image.  X-ray diffraction (XRD) is able to provide 

a material specific output but in this case, it has not been possible to definitively say 

whether there is a consistent and identifiable feature that can be used as a 

discriminator.  This is mainly related to having a limited number of samples and the 

need to build in constraints on the analysis processes. 

Further effort is required here to really understand the potential of both X-ray 

modalities.  A larger number of samples will enable statistically relevant conclusions 

to be drawn.  Automated classification of image texture could be a significant metric 
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to assist in meat grading/quality assessment. We believe that machine learning 

approaches, in which labeled data sets of chicken samples can be modelled according 

to their composition and CT and XRD profiles, in addition to domain expertise driven 

modelling where knowledge of X-ray CT, XRD and the context could aid sample 

classification using non-destructive testing. The former approach would require a 

larger data set, whereas the latter approach could achieve more with less data but 

with constraints added to derive accurate solutions. Commercial online X-ray CT 

technologies do exist, but the research team identified no example of work in the area 

of poultry inspection. In addition, the cost of these technologies is considerably higher 

than common optical imaging system, which is a larger barrier for wider adoption by 

the sector.  

A) Control B) Wooden/White 
stripe 

C) Control D) Wooden/White 
stripe 
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Figure 15: X-ray results on different chicken breast samples. A and C) Controls, B 
and D) wooden breast or white stripe.  

5.2.3 Quality inspection hyperspectral 

Figure 16 displays the hyperspectral image results on the whole chicken breast 

samples. Thin white stripes are more visible on the centre and right images which 

are breast samples containing wooden breast and white stripe respectively.  Figure 

17 displays the spectra (averaged over all image pixels) for the three different breast 

samples and a clear increase in relative reflectance was observed for the sample 

containing white stripe. This was most noticeable between the wavelengths of 900 

and 1400 nm. This could be a result of the firmer tissue in the sample with wooden 

breast creating a strong reflection of light and highlights the potential of 

hyperspectral imaging to detect wooden breast in acute cases where visual 

inspection is not capable.  

Figure 16: Chicken breast samples. Left) control, Middle) wooden breast, Right) 
white stripe. 
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Figure 17: Recorded spectra from whole chicken breast samples. 

Hyperspectral imaging on chopped chicken breast samples (Figures 18 and Figure 

19) showed the same results as the whole breast samples which is that thin white 

stripes/line are more noticeable in the samples with wooden breast or white stripe 

and the relative reflectance was higher in the samples with wooden breast.  

Figure 18: Chopped samples: Left) control, Middle) wooden breast, Right) white 
stripe. 
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Figure 19: Recorded spectra from the chopped samples. 

Several studies exist in the literature where optical sensors operating in the NIR 

range were utilised to detect and study wooden breast or white stripe in chicken.  

Hyperspectral imaging was used to differentiate between healthy and wooden 

chicken breast fillets in the NIR range (760-1040 nm) in an online scheme31. The 

study was accomplished via a commercial online system (QVision500, TOMRA 

Sorting Solutions, Leuven, Belgium) and was also used to determine protein, 

moisture, fat, pH, and colour (L*,a*, b*). A Partial Least Square Discriminant Analysis 

(PLSDA) classifier achieved an overall classification of 99.5% with all 28 wooden 

breast samples identified. The correlation coefficient (r) values for protein, and 

moisture were 76%, and 67%.  

Another study implemented the NIR sensing technology (760-1040 nm) and a 

nuclear magnetic resonance (NMR) relaxation system32. While the whole breasts 

were used for NIR measurements, a cylindrical sample with 8 mm height, and 20 

mm diameter was used for NMR measurements, similar to the X-ray work in our 

current project. Linear Discriminant Analysis classification models revealed that the 

overall classification accuracy of wooden breasts vs. healthy samples was identified 

with a success rate of 68.7%-96.1% using NIR and 76.9-98% using NMR. 

Colour vision and NIR spectroscopy (1150-2150 nm) were investigated to classify 

wooden breast and differentiate them from normal chicken breasts33. Intensity and 
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texture features were extracted from colour images and reflectance spectra were 

extracted from the NIR system. Several classifiers were utilised to differentiate 

between defected and healthy samples. Such classifiers included support vector 

machines, multilayer perceptron, random forest, and decision trees and the highest 

accuracy obtained from the vision system was 91.8%, whereas the value was 97.5% 

from NIR sensor. 

White stripe was evaluated in chicken breasts using Visible/NIR hyperspectral 

imaging (400-1000 nm)34. Principal Component Analysis (PCA) was used to select 

the most influential wavelengths including 450, 492, 541, 581, 629, 869, and 980 nm. 

Texture and histogram features were extracted and PLSDA was implemented for 

classification which results in classification accuracies using all, and selected 

wavelengths being as high as 95.8%, and 91.7%, respectively.        

Visible/NIR spectroscopy (200-1100 nm) was also used to quantify the presence of 

white stripe in turkey breast samples based on different quality traits such as L*a*b* 

colour components, pH, drip loss, cooking loss, moisture content, protein, and ash 

content35. White stripe samples were divided into moderate that has striations 

thickness of less than 1 mm, and severe with a thickness higher than 1 mm.  

Statistical analysis showed no significant difference between the mean of each of the 

previous traits although the fat content of normal samples was less that for medium 

or severe white stripe samples. 

The previous work demonstrated the potential of the techniques and was more 

comprehensive than the feasibility work, performed on a limited number of samples, 

in this current work. Previous work has even demonstrated the potential to identify 

wooden breast online. The majority of these previous works utilised different 

supervised data fitting (for example, machine learning) methods which require the 

labelling of samples with and without known conditions and is often a barrier for 

widespread adoption of the technologies in industry. To address this challenge other 

machine learning methods such as semi-supervised, active and transfer learning can 

be explored. 
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6. Recommendations for Future Work 

This project assessed the feasibility of using sensor technologies and advanced data 

analytics for poultry inspection. The project focused on PMI and tested a range of 

different sensing technologies at Food Co. and in the laboratory. The project also 

investigated the use of sensors to detect quality issues within poultry and utilise 

expertise from the Hartree Centre for advanced image and data analysis. To 

determine the requirements and benefits of any proposed new technologies, the 

study provided a benefits realisation model derived from stakeholder engagement 

through interviews. The benefits management modelling focused mainly on PMI 

detection, although it is likely that many aspects of the model would apply to other 

areas. 

The findings indicate that the application of AI, sensor and data analytic technologies 

provide the opportunity for the realisation of a considerable range of business 

benefits that would be valuable for the Regulator (for example, increased safety 

standards for food production improving consumer safety), MIs (for example, 

enriched work activities maximising best use of specialist knowledge), FBO (for 

example, real-time data-informed decision making), and farms (for example, earlier 

information on animal welfare issues). However, to realise these benefits, there 

would likely need to be programmes of organisational change in terms of process 

and job redesign combined with investments in the design and development of AI, 

sensor, and data analytic technologies.  

The benefits mentioned above reflect both tangible and non-tangible enhancements 

and should be complemented by an economic cost-benefit assessment and 

qualitative indicators of benefits. Including these measures would be important to 

enable effective management and monitoring of benefits delivery throughout 

transformation projects. 

Further, AI, sensor and data analytic technologies would need to be thoroughly 

tested before implementation to minimise disruption to the FBO. Designing 

replication of the FBO production line for testing is a significant challenge. The 

multiple stakeholders involved in the food production process provide a complex 

environment. They may present challenges for achieving agreed standards for data 
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access, data governance, responsibility and liability for automated decisions, and 

committing financial resources. 

Deep learning image processing demonstrated some potential to identify carcasses 

with known conditions although the primary limitation of the work was that all images 

used were down stream of the PMI and all carcasses of concern would have been 

removed. However, the machine learning models on the larger batches were able to 

identify carcasses with either dark and red skin and it is assumed would perform 

better with poultry conditions which are visibly more noticeable. To fully assess the 

potential of these techniques image analysis should be performed during the PMI 

and would be the logical next step for the research to continue.  

Further effort is required to fully understand the potential of both X-ray modalities 

and hyperspectral imaging for detection of quality issues in chicken breasts. Future 

work should focus on utilising a larger number of samples, exploring the potential of 

multi-sensor fusion activities and addressing the technical and economic barriers in 

developing systems that can operate effectively in production environments. The 

majority of work available in the literature is currently within technology readiness 

level (TRL) 1-4 and larger pilot scales with industry partners are required.  

Focus areas to continue the work: 

• Image collection during post-mortem inspection at a poultry facility 

• Infrared imaging at poultry facility for DOA component of the project 

• Large scale laboratory and pilot scale study with X-ray and hyperspectral 

systems for quality issues such as wooden breast and white stripe  

• Design of effective business strategies for Human + AI augmented meat 

inspection in complex stakeholder environments 

• Novel production line testing environments (for example, Digital Twin) for 

AI enabled meat inspection
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